jueves, 5 de julio de 2012

Apareció La Partícula de Dios. ¿Qué es?

Esta imagen de 2011 cedida por el CERN muestra una colisión real protón-protón en la que se observan 4 electrones de gran energía. El evento tiene las características que se esperan de la desintegración de un bosón de Higgs. (AP)

MÉXICO, D.F., julio 6 de 2012. (EL UNIVERSAL).- Científicos del Gran Colisionador de Hadrones (LHC) del Centro Europeo de Investigación Nuclear (CERN, por sus siglas en francés) confirmaron el descubrimiento del Bosón de Higgs, partícula subatómica conocida popularmente como la “partícula de Dios”, esquivo componente que hace que todos los objetos del Universo tengan masa.


Este hallazgo científico, considerado el más importante del mundo en los últimos 100 años, fue anunciado por Joe Incandela, portavoz del detector Solenoide Compacto de Muones (CMS) del LHC, que desde hace años busca esta pequeña partícula subatómica, última pieza faltante del Modelo Estándar de la física, que explica todas las fuerzas del Universo.

“Si bien es un resultado preliminar, es muy fuerte y muy sólido”, afirmó Incandela durante la Conferencia Internacional de Física de Altas Energías (ICHEP 2012) que se celebra en Melbourne, Australia, donde se expusieron los resultados obtenidos por los experimentos CMS y ATLAS del LHC.

En un comunicado del CERN, se señala que con un nivel de confianza de 95% se puede decir que el bosón de Higgs tiene una masa de 125.3 gigaelectrónvoltios (GeV), unas 130 veces la masa del protón, con un valor de 4.9 sigma, cifra que indica una elevada certeza de que el resultado es confiable, ya que oficialmente un descubrimiento debe tener un valor de 5 sigma.

“Hemos franqueado una nueva etapa en nuestra compresión de la naturaleza”, señala Rolf Heur, director del CERN. “El descubrimiento abre la vía a estudios más reposados que exigen más estadísticas y que establecerán las propiedades de la nueva partícula”, asegura.

Desde fines del año pasado, científicos del CERN ya habían anunciado que tenían indicios de la existencia del bosón de Higgs, pero los datos obtenidos por los detectores CMS y ATLAS del CERN durante 2011 y 2012, así como del Tevatron del Laboratorio Nacional Estadounidense Fermilab (Fermi National Accelerator Laboratory), durante 10 años, complementaron la información suficiente para anunciar el hallazgo.

Con un “gracias, naturaleza”, Fabiola Gianotti, directora del detector ATLAS, informó que encontraron una nueva partícula con masa 126.5 gigaelectronvoltios, con 5 sigma, lo que significa un descubrimiento. Pero que aún se necesita más tiempo para publicar los resultados.

Los físicos realizaron sus experimentos en el LHC y Fermilab, que son grandes laboratorios subterráneos con túneles en forma de anillo y con grandes colisionadores, en cuyo interior se impactan pequeñas partículas subatómicas aceleradas casi a la velocidad de la luz -en este caso, protones-, que al desintegrarse pueden observase y analizarse sus componentes más pequeños tanto de materia como de energía.

Modelo teórico

El planteamiento hecho en los años 70 por los físicos Peter Higgs, Robert Brout y François Englert, sugiere que después del origen del Universo con el Big Bang las partículas carecían de masa, pero cuando se enfrió surgió un campo de fuerza invisible que fue llamado el “campo de Higgs”, el cual se formó junto con su partícula el “bosón de Higgs”.

Este campo prevalece en todo el cosmos y todas las partículas que interactúan con él adquieren masa, y esta idea había proporcionado una solución satisfactoria y bien provista de fenómenos y cálculos matemáticos, pero el problema era que hasta ahora nadie jamás había observado el bosón de Higgs en un experimento para confirmar la teoría.

“Se trata de una gran logro del intelecto comprobar que en la naturaleza existe un mecanismo matemático teórico”, señala Gerardo Herrera Corral, del Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) y líder del grupo mexicano que trabaja en el CERN.

El investigador mexicano explica que el bosón de Higgs es una piedra angular del sistema de conocimiento actual. Le da una cierta resistencia al movimiento a la materia. Esto impide que se muevan a la velocidad de la luz en el vacío. Este mecanismo es similar al campo gravitacional o al campo electromagnético.

A la presentación de los resultados acudió el propio Peter Higgs, quien expresó lo siguiente: “Estoy extraordinariamente impresionado por lo que han logrado; mis felicitaciones a todos los implicados en este increíble logro. Es una enorme felicidad haberlo podido vivir”.

Lo que sigue

Después del descubrimiento, el siguiente paso será determinar la naturaleza exacta de la partícula y su importancia para nuestra comprensión del Universo. Saber si el bosón de Higgs es el último ingrediente o si hay algo más exótico.

El modelo estándar describe las partículas fundamentales de la que estamos hechos nosotros y cada cosa visible en el Cosmos, así como las fuerzas que actúan entre ellos. Sin embargo, es un asunto complejo.

“La diferencia del campo de Higgs con los campos gravitacional o electromagnético que nos son más familiares, es que no tiene una dirección determinada”, explica el mexicano Gerardo Herrera.

“El campo gravitacional al que estamos acostumbrados se manifiesta siempre en dirección al centro de la Tierra. Gracias a eso permanecemos fijos en la superficie del planeta independientemente de la latitud y longitud en que nos encontremos”.

El campo de Higgs interactúa con todas aquellas partículas que viven inmersas en él y les proporciona una masa, es decir, una cierta resistencia al movimiento.

Tomemos como ejemplo un salón lleno de adolescentes donde entra Justin Bieber, el cuarto es el campo de Higgs y Bieber una partícula de materia. Inmediatamente se agrupa un montón de jóvenes en torno al artista para saludarlo y pedirle su autógrafo, además del consecuente flujo de gritos. Después, las otras chicas de los alrededores se acercan para saber los detalles, generándose una onda de agrupamiento que corre por todo el lugar, formando un solo paquete compacto que sigue a Bieber a lo largo de todo el salón.

Ese agrupamiento le da a Bieber una masa mayor de lo normal, es decir, adquiere una resistencia al movimiento mayor y le cuesta más trabajo cruzar el salón, que si lo hiciera solo. Ese agrupamiento que le dio más masa es el bosón de Higgs.

Arturo Barba. Publicado por Yahoo! en Español.


CMS Higgs-event.jpg
Una traza hipotética del bosón de Higgs en una colisión protón-protón simulada.
ComposiciónPartícula elemental
FamiliaBosón
EstadoParcialmente confirmada: descubierta en el CERN una nueva partícula con propiedades compatibles.[1]
Símbolo(s)H0
Teorizada1964
DescubiertaJulio de 2012.[1]
Masa125–126 Gev/c2 aproximadamente.[1]
Carga eléctrica0
Carga de colorNo
Espín0

Si la partícula no existiera, seríamos fantasmas

Si la Partícula de Dios no existiera seríamos fantasmas. Antes de que esta semana la comunidad científica diera a conocer al mundo uno de los más importantes descubrimientos del siglo, el cine ya había dado algunas pistas. En la película ‘Solaris’ de Steve Soderbergh, algunos personajes estaban hechos de partículas estabilizadas por un campo de Higgs y en ‘Ángeles y Demonios’, Dan Brown ya había hablado del Bosón de Higgs como la Partícula de Dios.

Desde los años 60 se ha hablado del Bosón de Higgs. Sin embargo, pocos saben qué significa. Un bosón es un tipo de partícula del universo y Higgs es el apellido del físico que postuló su existencia (Peter Higgs). Es fugaz, se desintegra en otras partículas y no vive más de una fracción de segundo, por lo que no la podemos ver.

Peter HiggsPeter Higgs postuló la existencia del Bosón de Higgs.

Las partículas no pesan porque no tienen masa ni sustancias. Son vacías y vuelan a la velocidad de la luz, por eso, si flotaran libremente no habría átomos, no se uniría la masa y, por consiguiente, no existiríamos nosotros ni nada material (palpable, con peso y forma). Sería un mundo fantasmagórico en el que los cuerpos no se podrían solidificar y el Universo simplemente un espacio lleno de partículas dispersas vagando. Es por este motivo que le llaman la Partícula de Dios, porque sería la responsable de la creación de todas las cosas.

El campo Higgs llena todo el espacio, disminuye la velocidad de las partículas y las une. El Bosón Higgs es la vibración que hace posible esta interacción (acción), creando la energía necesaria para que las partículas se muevan a través del espacio, como un esquí sobre la nieve o cualquier superficie en la que no se siente la fricción.

Campo-Higgs

Desde hace más de 50 años los científicos han estado buscando una señal para comprobar la existencia del Bosón de Higgs. Hasta que el miércoles 4 de julio, después de una choque de miles de millones de protones en un túnel de 27 kilómetros de circunferencia a 100 metros bajo tierra, los científicos encontraron un rastro, una señal. No se trata de un descubrimiento sino de un acercamiento a la teoría. En un aparato que costó 10 mil millones de dólares, quedó atrapada la Partícula de Dios: una nueva manera de entender la naturaleza.

Túnel

La Partícula de Dios podría explicar la existencia de nuevas dimensiones y responder la pregunta sobre la oscuridad del universo. Una revolución científica que derrumbaría teorías físicas sostenidas durante décadas.

Publicado por Kienyke
http://www.kienyke.com/tendencias/sin-la-particula-de-dios-seriamos-fantasmas/

No hay comentarios: